MES-Series DC to DC Converter Modules

MES0524MH

DC/DC Converter

General Description

MES0524MH is a DC-to-DC converter which can be used to supply DC output from a commercial power supply (85 to 265 VAC). Using these module enable simple, easy drive of microcomputers, LEDs, and other electronic components without using a transformer.

It also allows set PCBs to be kept compact and lightweight, with extremely few attachments. It can accommodate the 85VAC~265VAC power supplies used as household power supplies.

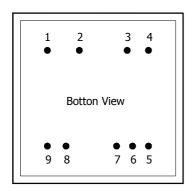
Application

- Small multi-purpose power supply.
- Stand-by power supply aimed at low power consumption when loaded light.
- Insulated-type DC-DC converted.

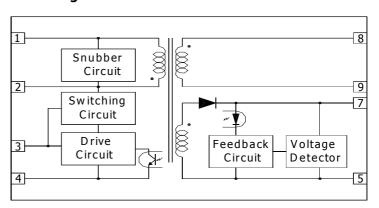
Features

- Wide Input Range: FREEVOLT (AC 85V ~ 265V)
- A switching power supply can be made easily by adding simply external circuit
- Permits reduction of power consumption at low loads(when in stand-by)
- Able to deal with inputs of worldwide areas
- Ultra-compact size attained by application of high-density mounting technique
- Application of the unique molding technique features
 Compliance with various safety regulations from the compact size
 Humming is prevented when intermittent oscillation
- Over Temperature Protection
- Output Short Circuit Protection
- Over Load Protection

Absolute Maximum Ratings (Ta = 25°C)


Characteristics	Symbol	Rating	Unit
Input Voltage	$V_{\rm IN}$	120 ~ 375	V_{DC}
Output Voltage 1 (DC Output)	V _{OUT1}	5	V
Maximum Output Current 1	I _{OMAX1}	1,000	mA
Output Voltage 2 (AC Output)	V _{OUT2}	24	V
Maximum Output Current 2	I _{OMAX2}	250	mA
ESD Endurance	V_{SURGE}	2	kV

AUG 2009


MES0524MH

Maximum Surface Temperature	T _{CMAX}	105	°C
Ambient Operating Temperature Range	T_OPR	-10~ +60	°C
Storage Temperature Range	T _{STG}	-40 ~ +105	°C

Pin Assignment

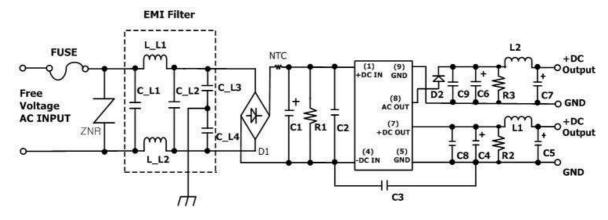
Block Diagram

Pin Descriptions

Pin Name	Pin No.	I/O	Description
+DC IN	1	I	Voltage Input Terminal, 120~375 V _{IN}
DRAIN	2	0	Drain Output Terminal
NC	3		No Connection
- DC IN	4	I	Voltage Input Terminal, 0 V _{IN}
GND	5	0	Voltage Output Terminal, 0V _{DC}
NC	6		No Connection
+DC OUT	7	0	DC Voltage Output Terminal, 5 V _{DC}
+AC OUT	8	0	AC Voltage Output Terminal, 24 V _{AC}
- AC OUT	9	0	AC Voltage Output Terminal, 0 V _{AC}

(Note1) Refer to the application circuit over pin connection

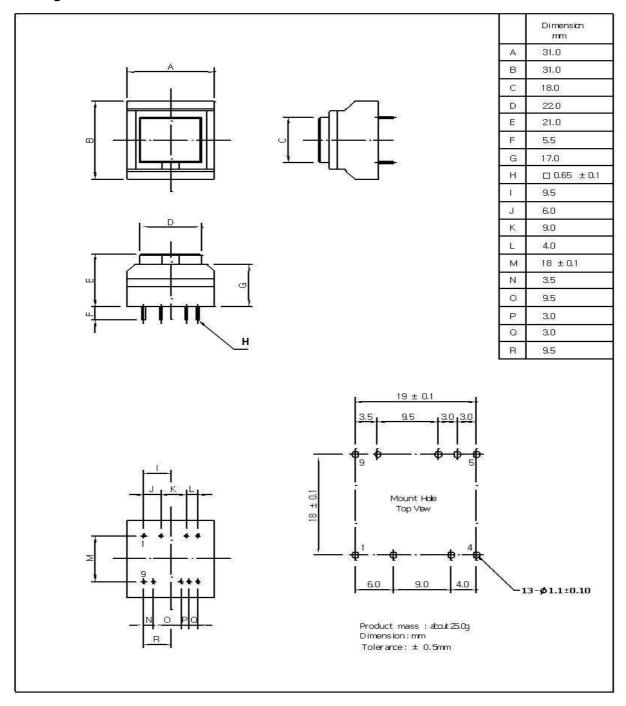
Electrical Characteristics


Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Voltage Range	V_{IN}		120	311	375	V_{DC}
Output Voltage 1 (DC Out)	V _{O1}	Vi=311V, Io1=1000mA	4.75	5.0	5.35	V
Output Current 1 (DC Out)	I_{O1}	Vi=311V	-	-	1,000	mA
Output Voltage 2 (AC Out)	V _{O2}	Vi=311V, Io2=250mA	22.0	24.0	26.0	V
Output Current 2 (AC Out)	I _{O2}	Vi=311V	-	-	250	mA
Line Regulation	V_R	Vi=120~375V, Io=1000mA	-	0.05	0.25	V

MES0524MH

Load Regulation	V_L	Vi=311V, Io=0~1,000mA	1	0.05	0.25	V
Output Ripple Voltage	V_P	Vi=311V, Io=1000mA	-	0.05	0.10	Vp-p
Power Conversion Efficiency	η	Vi=311V, Io=1000mA	68	75	-	%

Application Circuit


External Component Setting

External Component Setting				
FUSE	Fuse	Please make sure to use quick acting fuse 2A		
C1	Capacitor for input voltage smoothing	Capacitance : $33\mu F \sim 820\mu F$, Rated voltage : 400V or higher Ripple current is 0.13Arms above.		
C2	For noise terminal voltage reduction	Capacitance : $0.1\mu\text{F}\sim0.22\mu\text{F}$, Rated voltage : 400V or higher Film capacitor or ceramic capacitor. Reduce the noise terminal voltage. The constant value should be evaluated in the set.		
СЗ	Capacitor for Safety	Capacitance : 1nF~4.7nF, Rated voltage : 400V or higher		
C4, C5 C6, C7	Capacitor for output voltage smoothing	Capacitance : 470μ F \sim 1000 μ F, Rated voltage : 25V or higher ESD is 0.4Ω max. Ripple current is 0.25Arms above. Output noise voltage is influenced. Please evaluate it in the actual set.		
C8, C9	Bypass Capacitor for high frequency noise	Capacitance: 10nF~100nF, Rated voltage: 50V or higher Film capacitor or ceramic capacitor. Reduce the high frequency noise terminal output.		
R1	Discharge Resistor	500k Ω or higher , 1W or higher		
R2,R3	Dummy Resistor	1kΩ, 0.5W		
L1	Choke Coil	L: $4.7\mu H \sim 10\mu H$, Allowable current: 1,500mA or higher Please use the one that is hard to be magnetic saturated even in the high temperature.		
L2	Choke Coil	L: $10\mu H\sim 33\mu H$, Allowable current: 500mA or higher Please use the one that is hard to be magnetic saturated even in the high temperature.		

D1	Rectifier Diode	In the absolute maximum ratings, the reverse peak voltage should be 500V or higher, the average rectifying current should be 1A or higher, and the peak surge current should be 10A or higher. (Full-wave rectifier can be used in out part.)
D2	Ultra Fast Recovery Diode	In the absolute maximum ratings, the reverse peak voltage should be 200V or higher, the average rectifying current should be 1A or higher, and the peak surge current should be 10A or higher. (Full-wave rectifier can be used in out part.)

Package Outline

MES-Series DC to DC Converter Modules

Ordering Information

Order Number	Ambient Temperature Range	Package Type
MES0524MH	-10°C ~ 60°C	

^{*} Please consult the factory or sales representative for pricing and availability.

POWERGEN Co., Ltd.

67-13, Shinchon-dong, Changwon si, Gyeongnam, S. Korea, 642-370
TEL+82 55 275 7801~4 FAX +82 55 275 2522

This semiconductor technical data is believed to be accurate and reliable, however POWERGEN does not assume any responsibility arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

POWERGEN reserves the right at anytime without notice to change said circuitry and specifications.